7 research outputs found

    Scalability of the channel capacity in graphene-enabled wireless communications to the nanoscale

    Get PDF
    Graphene is a promising material which has been proposed to build graphene plasmonic miniaturized antennas, or graphennas, which show excellent conditions for the propagation of Surface Plasmon Polariton (SPP) waves in the terahertz band. Due to their small size of just a few micrometers, graphennas allow the implementation of wireless communications among nanosystems, leading to a novel paradigm known as Graphene-enabled Wireless Communications (GWC). In this paper, an analytical framework is developed to evaluate how the channel capacity of a GWC system scales as its dimensions shrink. In particular, we study how the unique propagation of SPP waves in graphennas will impact the channel capacity. Next, we further compare these results with respect to the case when metallic antennas are used, in which these plasmonic effects do not appear. In addition, asymptotic expressions for the channel capacity are derived in the limit when the system dimensions tend to zero. In this scenario, necessary conditions to ensure the feasibility of GWC networks are found. Finally, using these conditions, new guidelines are derived to explore the scalability of various parameters, such as transmission range and transmitted power. These results may be helpful for designers of future GWC systems and networks.Peer ReviewedPostprint (author’s final draft

    Red meat producers' preferences for strategies to cope with the CAP reform in Scotland

    Get PDF
    The miniaturization of transceivers and antennas is enabling the development of Wireless Networks-on-Chip (WNoC), in which chip-scale communication is utilized to increase the computing performance of multi-core/multi-chip architectures. Although the potential benefits of the WNoC paradigm have been studied in depth, its practicality remains unclear due to the lack of a proper characterization of the wireless channel at the chip scale and across the spectrum, among others. In this paper, the state of the art in wave propagation and channel modeling for chip-scale communication is surveyed. First, the peculiarities of WNoC, including the design drivers, architecture, environment, and on-chip electromagnetics are reviewed. After a brief description of the different methods to characterize wave propagation at chip-scales, a comprehensive discussion covering the different works at millimeter-wave (mmWave), Terahertz (THz) and optical frequencies is provided. Finally, the major challenges in the characterization of the WNoC channel and potential solutions to address them are discussed, providing a roadmap for the foundations of practical WNoCs.Peer ReviewedPostprint (published version

    Graphene-based nano-patch antenna for terahertz radiation

    No full text
    The scattering of terahertz radiation on a graphene-based nano-patch antenna is numerically analyzed. The extinction cross section of the nano-antenna supported by silicon and silicon dioxide substrates of different thickness are calculated. Scattering resonances in the terahertz band are identified as Fabry–Perot resonances of surface plasmon polaritons supported by the graphene film. A strong tunability of the antenna resonances via electrostatic bias is numerically demonstrated, opening perspectives to design tunable graphene-based nano-antennas. These antennas are envisaged to enable wireless communications at the nanoscale.Peer ReviewedPostprint (published version

    Scalability of the channel capacity in graphene-enabled wireless communications to the nanoscale

    No full text
    Graphene is a promising material which has been proposed to build graphene plasmonic miniaturized antennas, or graphennas, which show excellent conditions for the propagation of Surface Plasmon Polariton (SPP) waves in the terahertz band. Due to their small size of just a few micrometers, graphennas allow the implementation of wireless communications among nanosystems, leading to a novel paradigm known as Graphene-enabled Wireless Communications (GWC). In this paper, an analytical framework is developed to evaluate how the channel capacity of a GWC system scales as its dimensions shrink. In particular, we study how the unique propagation of SPP waves in graphennas will impact the channel capacity. Next, we further compare these results with respect to the case when metallic antennas are used, in which these plasmonic effects do not appear. In addition, asymptotic expressions for the channel capacity are derived in the limit when the system dimensions tend to zero. In this scenario, necessary conditions to ensure the feasibility of GWC networks are found. Finally, using these conditions, new guidelines are derived to explore the scalability of various parameters, such as transmission range and transmitted power. These results may be helpful for designers of future GWC systems and networks.Peer Reviewe
    corecore